Variability and uncertainty of biokinetic model parameters: the discrete empirical Bayes approximation.

نویسنده

  • Guthrie Miller
چکیده

In the Bayesian approach to internal dosimetry, uncertainty and variability of biokinetic model parameters need to be taken into account. The discrete empirical Bayes approximation replaces integration over biokinetic model parameters by discrete summation in the evaluation of Bayesian posterior averages using Bayes theorem. The discrete choices of parameters are taken as best-fit point determinations of model parameters for a study subpopulation with extensive data. A simple heuristic model is constructed to numerically and theoretically study this approximation. The heuristic example is the measurement of heights of a group of people, say from a photograph where measurement uncertainty is significant. A comparison is made of posterior mean and standard deviation of height after a measurement, (i) using the exact prior describing the distribution of true height in the population and (ii) using the approximate discrete empirical Bayes prior obtained from measurements of some study subpopulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Bayes Estimators with Uncertainty Measures for NEF-QVF Populations

The paper proposes empirical Bayes (EB) estimators for simultaneous estimation of means in the natural exponential family (NEF) with quadratic variance functions (QVF) models. Morris (1982, 1983a) characterized the NEF-QVF distributions which include among others the binomial, Poisson and normal distributions. In addition to the EB estimators, we provide approximations to the MSE’s of t...

متن کامل

Bayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests

A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function.  As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...

متن کامل

EMPIRICAL BAYES ANALYSIS OF TWO-FACTOR EXPERIMENTS UNDER INVERSE GAUSSIAN MODEL

A two-factor experiment with interaction between factors wherein observations follow an Inverse Gaussian model is considered. Analysis of the experiment is approached via an empirical Bayes procedure. The conjugate family of prior distributions is considered. Bayes and empirical Bayes estimators are derived. Application of the procedure is illustrated on a data set, which has previously been an...

متن کامل

Bayes Estimation for a Simple Step-stress Model with Type-I Censored Data from the Geometric Distribution

This paper focuses on a Bayes inference model for a simple step-stress life test using Type-I censored sample in a discrete set-up. Assuming the failure times at each stress level are geometrically distributed, the Bayes estimation problem of the parameters of interest is investigated in the both of point and interval approaches. To derive the Bayesian point estimators, some various balanced lo...

متن کامل

A Bayesian Foundation for Individual Learning Under Uncertainty

Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL) and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability and involve complicated integrals, making online learning difficult. Here, we introduce a generic h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Radiation protection dosimetry

دوره 131 3  شماره 

صفحات  -

تاریخ انتشار 2008